Lesson 1.4: Factoring Trinomials of the Form $x^2 + bx + C$ (Simple Trinomials)

Specific Outcome: 5.2 – Model factoring of a trinomial, concretely or pictorially, and record the process symbolically. 5.4 – Identify and explain errors in a polynomial factorization. 5.5 – Factor a polynomial, and verify by multiplying the factors. 5.8 – Express a polynomial as a product of its factors.

A. FACTOR USING ALGEBRA TILES

Factor: $x^2 + 5x + 6$

Solution: _____

Practice:

a) $x^2 + 5x + 4$

B. FACTOR USING SUM/PRODUCT METHOD

The following are examples of trinomials that have been factored into two binomial factors.

$x^2 + 7x + 6 = (x + 6)(x + 1)$	$x^2 + 7x + 12 = (x+4)(x+3)$
$x^2 - 9x + 20 = (x - 5)(x - 4)$	$x^2 + 4x - 12 = (x+6)(x-2)$

Label all of the numbers: $x^2 + bx + c = (x + m)(x + n)$. How are *m* and *n* related to *b* and *c*?

**We use this sum and product relationship to factor simple trinomials.

1. Factor. x ² + 8x + 3	12: S:	Practice: Factor.	S:
	P:	a) $x^2 + 13x + 12$	P:
b) a ² + 16a + 64	S: P:	*c) 2y ² + 20y + 48	*d) -3a ² - 51a - 216

2. Factor. x ² – 11x + 10:	Practice: Factor. a) a ² – 11a + 30	
b) y ² - 10y + 25	c) $x^2 - 11x + 28$	*d) 4a ² – 48a + 80
****HELPFUL HINT: When the pro 3. Factor: $x^2 - 2x - 24$	oduct is a positive number, both inte	egers have the same sign!!!! x ² + 2x - 24
Practice: Factor. a) $y^2 - 3y - 54$	b) $y^2 + 3y - 40$	c) $x^2 + 7x - 30$
d) $x^2 - 4x - 32$	*e) 5x ² – 5x – 60	

*****HELPFUL HINT: When the product is a negative number, the integers have opposite signs!!!!

Problem Solving:

1. The expression $x^2 - 4x - 45$ cm² can be written in the form (x - a)(x + b). The value of a + b is ______.

When factored, the trinomials x² - 10x + 21 and x² - 4x - 21 have one binomial factor in common. This factor is
A. x - 7
B. x + 7

- **C.** x 3 **D.** x + 3
- 3. Find all possible integers for k so that each trinomial can be factored. a) $x^2 + kx + 20$ b) $x^2 + kx - 8$