Lesson 2.7: Negative Exponents and Reciprocals

Specific Outcome: 3.1 – Explain, using patterns, why $a^{-n} = \frac{1}{a^n}$, $a \neq 0$. 3.6 – Identify and correct errors in a simplification of an expression that involves powers. 3.3 – Apply the exponent laws to expressions with rational and variable bases and integral and rational exponents, and explain reasoning.

<u>REVIEW (Gr. 9)</u>: Two numbers are **reciprocals** if their product is 1:

Similarly:

Practice:	Write the recip	rocal for each of	the following nι	ımbers.			
a) 6	b) 11	c) -41	d) -0.5	e) $\frac{1}{2}$	f) $\frac{8}{5}$	g) $-\frac{4}{9}$	h) $-\frac{1}{7}$

<u>POWERS WITH NEGATIVE EXPONENTS</u> $a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1}{a^n} \quad and \quad \frac{1}{a^{-n}} = \left(\frac{1}{a}\right)^{-n} = a^n \qquad a \neq 0$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n \qquad a, b \neq 0$$

Practice: Write each power with a positive exponent.

a)
$$2^{-2}$$
 b) $(-5)^{-4}$ c) $\frac{1}{4^{-2}}$ d) $\left(-\frac{1}{3}\right)^{-5}$ e) $\left(\frac{4a}{3}\right)^{-2}$ f) x^{-3} g) $\left(\frac{1}{x}\right)^{-7}$

HOMEWORK: P. 233 – 3, 5, 6, 7, 8

POWERS WITH NEGATIVE RATIONAL (Fractional) EXPONENTS

$$a^{-\frac{m}{n}} = \left(\frac{1}{a}\right)^{\overline{n}}$$
 because exponent is negative
= $\left(\frac{n}{\sqrt{\frac{1}{a}}}\right)^{m}$ because exponent is a rational number

Consider: $8^{-\frac{2}{3}}$ We can evaluate this power in steps as follows:

1. Write with a positive exponent:
$$8^{-\frac{2}{3}} =$$

- 2. Write as a radical (fractional exponent): =
- 3. Simplify radical in brackets: =
- 4. Evaluate: =

Practice: Evaluate the following powers by converting them to radicals.

C) $\left(\frac{16}{25}\right)^{-\frac{3}{2}}$ d) $\left(-\frac{27}{8}\right)^{-\frac{2}{3}}$ e) $\left(\frac{1}{4}\right)^{-1.5}$ b) 49⁻³/₂ a) $4^{-\frac{1}{2}}$

Problem Solving:

1. Paleontologists use measurements from fossilized dinosaur tracks and the formula $v = 0.155s_3^{\frac{5}{5}}f^{\frac{-7}{6}}$ to estimate the speed at which the dinosaur travelled. In the formula, v is the speed in m/s, s is the distance between successive footprints of the same foot, and f is the foot length in m. Estimate the speed of the dinosaur when s = 1 and f = 0.25.

Which expression is not equivalent to the others? 2.

A.
$$a^{-\frac{1}{3}}$$

B. $\left(\frac{1}{a^4}\right)^3$
C. $\left(\sqrt[3]{a}\right)^{-4}$
D. $\frac{1}{\sqrt[3]{a^4}}$

For all positive integers a and b, which of the following is not equivalent to $a^3\sqrt{b}$? 3.

- A. $a^3b^{\frac{1}{2}}$
- **B.** $(a^6b)^{\frac{1}{2}}$
- C. $\sqrt{a^6b}$
- **D.** All of the expressions are equivalent to $a^3\sqrt{b}$.
- *4. Evaluate the following and arrange the answers from greatest to least.

Calculation 1. $-(27)^{-\frac{2}{3}}$

Calculation 2. $\left(\frac{1}{27}\right)^3$

Calculation 3. $(-27)^{\frac{2}{3}}$

Calculation 4. $\left(-\frac{1}{27}\right)^{-\frac{1}{3}}$

Place the calculation # with the greatest answer in the first box. Place the calculation # with the second greatest answer in the second box. Place the calculation # with the third greatest answer in the third box. Place the calculation # with the smallest answer in the fourth box.

(Record your answer in the numerical response box from left to right)

HOMEWORK:	P. 233 -	11.12	. 13	. 15.	16	*19
			,,			