Lesson 1.3: Factoring Polynomials – G C F

Specific Outcome: 5.1 – Determine the common factors in the terms of a polynomial, and express the polynomials in factored form. 5.4 – Identify and explain errors in a polynomial factorization. 5.5 – Factor a polynomial, and verify by multiplying the factors.

A. FACTORING BY RE	MOVING A <u>MONOMIAL</u> GCF					
To factor $6c + 4c^2$:	1. Find GCF of coefficients					
	2. Find GCF of variables					
	3. Factor the GCF out of each t	term				
Practice: Factor each	of the following polynomials.					
a) 5a ² – 25 =	b) $18x^2 - 16x^3 =$	c) $-m - 6m^2 =$	d) $18x^2y^2 - 45xy^2 + 9x =$			

e) $30a^{3}b^{2}c - 15a^{2}bc^{2} - 35abc^{2} =$

f) Verify e) above by expanding the factors:

Problem Solving:

1. The surface area of a cone is given by the formula $SA = \pi r^2 + \pi rs$, where r is the radius of the base of the cone and s is the slant height.

Write the formula given above in factored form.

$$SA = \pi r^2 + \pi rs =$$

2. Here is a student's solution for factoring. Identify any errors and write a correct solution if necessary.

Factor: $3m^2 + 9m^3 - 3m$ Solution: $3m^2 + 9m^3 - 3m = 3m(m + 3m^2)$

HOMEWORK P. 155 – 8(bdf), 10(bdf), 12(a), 14, 16(bdf)

B. FACTORING BY REMOVING A BINOMIAL GCF

Factor: 2(x+3) - 5x(x+3)

Practice: Factor each of th	e following expressions.		
a) x(2 – x) + 7(2 – x)	b) 3a(a + 8) – 5(a + 8)	c) 2r(2r−3)−9(2r−3)	*d) 5a(4–3a) + (3a–4)

C. FACTORING BY GROUPING THEN REMOVING GCF

- **Grouping** is used when the polynomial to be factored has **4 terms**.
- Brackets are used when grouping.

Factor: $x^2 + 2x + 6x + 12$ 1. Use brackets to group:

3. Find binomial GCF:

2. Find GCF from each group:

4. Write as Factors:

Practice: Factor each polynomial. a) $x^2 + 3x + 15x + 45$ b) $x^2 - 9x - 5x + 45$ c) $2a^2 - 6a - 3a + 9$ d) $2x^2 + 9x - 8x - 36$ *e) $ab + x^2 - ax - bx$

Problem Solving:

- 1. Consider the polynomial $3a^2 + 4a + 9a + c$, where c is a constant. If a + 3 is a factor, then the other factor must be
 - **A.** *a* + 4
 - **B.** 3*a* + 4
 - **C.** 3*a* + 9
 - **D.** *a* + 12
 - *2. x(x-2) + 3(2-x) is equivalent to A. (x-2)(x-3)B. (x-2)(x+3)C. (2-x)(x-3)D. (2-x)(x+3)

HOMEWORK:

- 2. Factor.
 - **d**) $a^2 9a 5a + 45$ **e**) $x^2 15x 4x + 60$ **f**) $t^2 + 7t 3t 21$
- 3. Factor.

a) $2x^2 + 2x + 3x + 3$ **b)** $3x^2 + x + 6x + 2$ **c)** $3m^2 + 9m + 5m + 15$

10. One factor of xy - 4xz - 12tz + 3ty is

.

A. (4t + x)B. (3t - x)C. (y - 4z)D. (3x + t)

ANSWER KEY:

10. C

2. a) (x + 2)(x + 6) b) (x + 3)(x + 15) c) (m - 5)(m + 2)d) (a - 9)(a - 5) e) (x - 15)(x - 4) f) (t + 7)(t - 3)3. a) (x + 1)(2x + 3) b) (3x + 1)(x + 2) c) (m + 3)(3m + 5)d) (2b - 3)(3b - 2) e) (a - 3)(2a - 1) f) (5x + 2)(x - 5)g) $(4 + p)^2$ h) (5 - y)(3 - y) i) (a + x)(a + y)4. a) (b - x)(a - x) or (x - a)(x - b) b) (b - 3)(4b - a) c) $(x - 3y^2)(4x - 5)$

14. 1 2	
---------	--