Set Notation versus Interval Notation

Domain and range are a very important and necessary skill in Math 20 - 1 and Math 30 - 1. They can be written using both set notation and interval notation.

Interval Notation: (description)	(diagram)
Open Interval: (a, b) is interpreted as $a < x < b$ where the endpoints are <u>NOT</u> included. (While this notation resembles an ordered pair, in this context it refers to the interval upon which you are working.)	(1, 5)
Closed Interval: [a, b] is interpreted as $a \le x \le b$ where the endpoints are included.	[1, 5]
Half–Open Interval: $(a, b]$ is interpreted as $a < x \le b$ where a is not included, but b is included.	(1, 5]
Half–Open Interval: [<i>a</i> , <i>b</i>) is interpreted as $a \le x < b$ where a is included, but b is not included.	[1, 5)
Non-ending Interval: (a, ∞) is interpreted as $x > a$ where a is not included and infinity is always expressed as being "open" (not included).	$(1,\infty)$
Non-ending Interval: $(-\infty, b]$ is interpreted as $x \le b$ where <i>b</i> is included and again, infinity is always expressed as being "open" (not included).	$(-\infty, 5]$

a) {x xєR}
b) {y yєR}
c) {x x≥-5; x∈R}
d) {x x≥3; x∈R}
e) {x x≤-11; x∈R}
f) {x x≤18; x∈R}
g) {x x>-16; xєR}
h) {x x>20; xεR}
i) {x x<-31; xεR}
j) {x x<17; xεR}
k) {x x≠9; x∈R}
l) {x x≠-6; x∈R}
m) {x -1 <x<3; td="" xεr}<=""></x<3;>
n) {x -1≤x<3; x∈R}
o) {x -1 <x≤3; td="" x∈r}<=""></x≤3;>
p) {x -1≤x≤3; x∈R}
q) {x -5 <x<9; td="" xєr}<=""></x<9;>
r) {x -5≤x<9; x∈R}
s) {x -5 <x≤9; td="" x∈r}<=""></x≤9;>
t) {x -5≤x≤9; x∈R}

Example 1: Write the following set notation in interval notation.

Example 2: State the domain and range in both set notation and interval notation.

Exponential Function

Absolute Value Function

Rational Function

