Lesson 2.6: Fractional Exponents and Radicals

Specific Outcome: 3.3 – Apply the exponent laws to expressions with rational and variable bases and integral and rational exponents, and explain reasoning. 3.4 – Express powers with rational exponents as radicals and vice versa. 3.2 – Explain, using patterns, why $a^{1/n} = \sqrt[n]{a}$, n > 0. 3.6 – Identify and correct errors in a simplification of an expression that involves powers.

POWERS (Gr. 9 Review)

A power is a number written with a *base* and an *exponent*:

$a^{n} \leftarrow Exponent$ A Base

- A base with no exponent is understood to have an exponent of 1: so, $5 = 5^1$
- Any power with a non-zero base and an *exponent of 0* is equal to 1: so, $3^0 = 1$, $x^0 = 1$
- When a power has a *negative* or *fractional* base, the base must be enclosed in brackets! Eg. $(-6)^4 \left(\frac{2}{2}\right)^4$

Practice: State the base and the exponent in each of the following powers.

a) 8 ³	b) $(-10)^7$	c) $\left(\frac{4}{6}\right)^2$	d) x^{y}
-------------------	--------------	---------------------------------	------------

Practice: Evaluate each power as a decimal, to the nearest hundredth, using a calculator

Now evaluate each of these radicals using a calculator.

a) $\sqrt[3]{1000}$ b) $\sqrt[4]{\frac{16}{81}}$ c) $\sqrt[2]{0.25}$

What conclusion can you make about a)'s, b)'s and c)'s above?

POWERS WITH FRACTIONAL EXPONENTS WITH NUMERATOR 1

• When $n \in N$ and $a \in Q$,

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Practice: Write each power as a radical, then evaluate if possible.

a) $27^{\frac{1}{3}}$	b) $49^{\frac{1}{2}}$	c) $(-64)^{\frac{1}{3}}$	d) $\left(\frac{4}{9}\right)^{\frac{1}{2}}$	e) 25 ^{0.5}	f) $x^{\frac{1}{5}}$
-----------------------	-----------------------	--------------------------	---	----------------------	----------------------

Practice:	Write each radical as a power.	Use brackets as	necessary.		
a) $\sqrt{29}$	b) ³ √73	c) ∜ <u>−122</u>	d) $\sqrt[4]{\frac{6}{7}}$	e) $\sqrt{-\frac{3}{4}}$	f) $\sqrt[3]{x}$

HOMEWORK: P. 227 - 3, 4(ab), 5, 6, 7(ace)

POWERS WITH FRACTIONAL EXPONENTS

When $m, n \in N$, and $a \in Q$,

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$$
 OR $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Write $40^{\frac{2}{3}}$ as a radical in 2 ways:

Practice: Write the powers in radical form. Evaluate starred ones.
*a)
$$27^{\frac{4}{3}}$$
 b) $(-35)^{\frac{3}{5}}$ *c) $81^{\frac{5}{4}}$ *d) $\left(\frac{9}{4}\right)^{1.5}$ e) $(-x)^{\frac{3}{5}}$

Practice: Write each radical in exponential form.

a) $\sqrt[4]{19^3}$	b) $(\sqrt[3]{-42})^2$	c) $(\sqrt{200x})^5$	d) $\left(\sqrt[3]{\frac{-8}{27}}\right)^4$	e) $\sqrt{83x^7}$
---------------------	------------------------	----------------------	---	-------------------

Problem Solving:

1. A cube has a volume of 30 cm^3 . Write the side length of the cube as:

- a) a radical
- b) a power
- 2. Biologists use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass, *b* kg, of a mammal with a body mass of *m* kg. Estimate the brain mass of each animal. Round to the nearest hundredth if necessary. a) a moose with a body mass of 512 kg b) a cat with a body mass of 5 kg

c) Given 1 lb = 0.454 kg, determine the answer from b) in pounds, to the nearest hundredth.